An artificial neural network model for accurate and efficient optical property mapping from spatial-frequency domain images
نویسندگان
چکیده
Conventional optical property mapping by spatial-frequency domain imaging (SFDI) is prone to relatively low efficiency due the iterative nature of nonlinear curve-fitting based on light transfer model, such as diffusion approximation equation. This study aims at expediating prediction with high accuracy developing an artificial neural network (ANN) model coupled SFDI. A dataset was first generated using Monte Carlo simulations Graphic Processing Unit. The ANN training then conducted and optimized for multiple factors (learning rate, batch size number neurons). Experiments simulation samples a solid phantom were carried out verify performance predicting mapping. Results showed that normalized mean absolute errors absorption coefficient (?a) reduced scattering (?'s) 0.18 % 0.027 %, while root square 0.01 0.14. Optical properties demonstrated proposed retained accuracy, about three orders magnitude faster than inverse model. Finally, tested measurement ‘Golden Delicious’ apples different bruising levels (non-, severe bruising). indicated could measure apple ?a ?'s accurately efficiently, measured capable detecting early in apples. Contrast bruise feature value between bruised non-bruised tissues significantly improved, enhancing detection.
منابع مشابه
scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network
today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...
Artificial Neural Network Model for Predicting Insurance Insolvency
In addition to its primary role of providing financial protection for other industries the insurance industry also serves as a medium for fund mobilization. In spite of the harsh economic environment in Nigeria, the insurance industry has been crucial to the consummation of business plans and wealth creation. However, the continued downturn experienced by many countries, in the last decade, se...
متن کاملDevelopment of An Artificial Neural Network Model for Asphalt Pavement Deterioration Using LTPP Data
Deterioration models are important and essential part of any Pavement Management System (PMS). These models are used to predict future pavement situation based on existence condition, parameters causing deterioration and implications of various maintenance and rehabilitation policies on pavement. The majority of these models are based on roughness which is one of the most important indices in p...
متن کاملAn Artificial Neural Network Model for Predicting the Pressure Gradient in Horizontal Oil–Water Separated Flow
In this study, a three–layer artificial neural network (ANN) model was developed to predict the pressure gradient in horizontal liquid–liquid separated flow. A total of 455 data points were collected from 13 data sources to develop the ANN model. Superficial velocities, viscosity ratio and density ratio of oil to water, and roughness and inner diameter of pipe were used as input parameters of ...
متن کاملAn Artificial Neural Network Model for Predicting the Pressure Gradient in Horizontal Oil–Water Separated Flow
In this study, a three–layer artificial neural network (ANN) model was developed to predict the pressure gradient in horizontal liquid–liquid separated flow. A total of 455 data points were collected from 13 data sources to develop the ANN model. Superficial velocities, viscosity ratio and density ratio of oil to water, and roughness and inner diameter of pipe were used as input parameters of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers and Electronics in Agriculture
سال: 2021
ISSN: ['1872-7107', '0168-1699']
DOI: https://doi.org/10.1016/j.compag.2021.106340